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The correlation dimension is calculated for data from a partial-differential-equation model of a
magnetic-domain wall—the Bloch wall in a magnetic thin film. The data were extracted from different
locations along the height of the wall and two types of embedding were used: a time-delay method from
data taken at a single location in the wall (reconstructed phase space) and data taken from ten locations
in the wall simultaneously (physical phase space). Three chaotic attractors of the Bloch wall were stud-
ied. The time-delay method for some attractors gives a dependence of the correlation dimension on the
location at which the data were extracted. This dependence has a specific symmetry with respect to the
film in which the Bloch wall resides and a surface (or boundary) effect is seen—the correlation dimen-
sion is different at the surfaces of the film. Several scaling regions are found in some cases. The physical
phase-space embedding yields a correlation dimension which is an average of the spatial dependence ob-
tained in the time-delay method, but usually this embedding gives a somewhat lower value of the correla-

tion dimension.

PACS number(s): 05.45.+b, 75.10.Hk, 75.60.Ch

I. INTRODUCTION

Many deterministic physical systems exhibit chaotic
dynamics. Of these some are described by ordinary
differential equations of motion (e.g., the nonlinear oscil-
lator, the Lorenz systems, and the Bielousov-Zhabotinski
chemical reaction [1]) and much fewer systems are de-
scribed by partial differential equations of motion (e.g.,
the Navier-Stokes hydrodynamic equation [1], the sine-
Gordon-equation soliton system [2], and the Bloch
magnetic-domain wall [3,4]). In the latter type of sys-
tems, not only temporal deterministic chaos but also spa-
tiotemporal chaos is possible.

For the ordinary-differential-equation systems a num-
ber of well-tested tools for nonlinear dynamics analysis of
their behavior exist. Among others, algorithms for the
calculation of Liapunov exponents [5], f(a) curves [6],
and correlation dimensions [7] are readily available. In
most cases, however, all calculations are done not in the
original phase space of the system but in a synthetic
phase space reconstructed from a single, arbitrarily
chosen variable of the system by a time-delay technique
based on an embedding theorem by Takens [8,9]. There
is, of course, an excellent reason for such an approach as,
especially in dealing with experimental data, usually not
all variables are available.

The effect of information flow in spatially extended sys-
tems (described by coupled maps) has been studied
[10,11] and it was demonstrated that local dynamics
creates a perturbation the effect of which may diffuse
along the spatial directions of the system. The question
then arises as to how fast the amplitude of the informa-
tion decays with distance. Moreover, given a finite reso-
lution due to the finite length of the time series, how
strongly will a remote dynamical event be felt in other
parts of the system by the analysis technique of choice?
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Following an idea by Pomeau [12], Kurtz and Mayer-
Kress [13,14] have measured a two-point dimension den-
sity calculated from a combined signal taken from two
points in the system some distance apart. Both in [12]
and in [13,14] the reader is cautioned that the method
may be applied only to systems in which the dynamics is
sufficiently independent of position (homogeneous dy-
namics). In spite of this rather strong assumption, the re-
sults show clearly that, for a given coupling strength be-
tween the lattices of the system, the local dynamics at one
point are felt at other points in the system only within a
finite distance.

The magnetic-domain wall of the Bloch type [3,4],
which was the spatially extended system studied here, is
not homogeneous in the sense that it not only has boun-
daries (the surfaces of the thin film of a uniaxial magnetic
material in which it resides [3]), but also the distance be-
tween these boundaries is such that the dynamics be-
tween them is strongly influenced by them. A surface
effect may be obtained for some areas of parameter space
and the phase portraits calculated from a point in the
wall located at the surface of the film are different from
those deeper inside the material [15]. For such a system
the time-delay reconstruction technique is not obviously
an adequate tool to find a global measure of the dynamics
in the system (e.g., a single correlation-dimension value).

In this paper a comparison is made between the corre-
lation dimension calculated in phase spaces reconstructed
by means of data taken from several locations along the
magnetic-domain wall with the correlation dimension
calculated for the trajectory of the wall in physical phase
space. It is shown that in a spatially extended system
with inhomogeneous dynamics like the Bloch wall stud-
ied here, the use of the single-point time-delay recon-
struction technique may be a probe of the number of de-
grees of freedom active at a given location in the system.
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Single-point correlation dimension is treated as a measure
of the local dynamics of the system. The results indicate
that the spatial distribution of the correlation dimension
is related to the symmetry of the system: the number of
degrees of freedom is, in general, decreased at the boun-
daries of the system and at the midplane of the system.
The multiscale character of the chaotic attractors studied
is discussed. The correlation dimension calculated from
single-point time-delay reconstruction of the attractors is
compared with the same quantity calculated from a phys-
ical phase space (for definition, see below) and it is shown
that, in general, the results are not the same.

II. THE PHYSICAL SYSTEM

The calculations were carried out for a spatially ex-
tended dynamical system: a magnetic-domain wall of the
Bloch type (Fig. 1). This is the simplest of all possible
180° magnetic-domain walls [16]. For magnetic materials
with a uniaxial anisotropy energy density which is larger
than the demagnetization energy density, the wall may be
treated as a membrane of magnetic moments (the Bloch
surface) with an additional degree of freedom—the az-
imuthal angle of the magnetic moment with respect to
this membrane [3,16]. Then the equations of motion are
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where A is the exchange constant, y is the gyromagnetic
ratio, 4w M is the saturation magnetization, A is the Bloch
wall width, a is the Gilbert damping constant, and H, is
the constant drive field. ¢(z,7) is the local position of the
wall, the azimuthal angle ¢(z,¢) describes the position of
the magnetic moment with respect to the plane of the
wall, and the axis of the coordinate z lies in the plane of
the wall and is parallel to the easy axis of the anisotropy.
For all cases studied in this paper, the easy axis of the an-
isotropy was assumed to be perpendicular to the surface
of the magnetic material in which the domains reside and
the surface stray fields were ignored (see discussion in
Ref. [3]). The equations of motion of the wall were
solved by means of a numerical scheme which is a version
of the well-known DuFort-Frankel method rewritten in
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FIG. 1. 180° Bloch wall between two domains in a thin mag-
netic film with uniaxial perpendicular anisotropy.
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vector form [3]. In the calculations discussed below, de-
pending on the height of the wall, from 52 to 88 evenly
spaced numerical grid points were used with a 0.05-ns
time step.

Force-free boundary conditions [3] 9d¢/dz=0 and
0¢p/0z=0 were applied. The initial conditions were
q(z,0)=0.0 and ¢(z,7)=0.0.

The material parameters were the following: exchange
constant 4 =0.81X 1077 erg/cm, saturation magnetiza-
tion 47M =140G, gyromagnetic ratio y=1.73X10’
1/s Oe, Bloch wall width A=0.029X10"* cm, Gilbert
damping constant @ =0.156. For these material parame-
ters the Walker critical field, which separates two distinct
regimes of the motion of the Bloch wall, is
H,=a2mM =10.92 Oe; below H,, a stationary motion is
obtained while for drive field magnitudes larger than the
critical value periodic or chaotic states are possible [3].

It has been known for some time—from experiments
on domain wall dynamics [16] and from different theoret-
ical discussion (cf. [13])—that the Bloch wall moving in a
spatially uniform drive field of a larger value than the
threshold of the Walker field will divide itself into parts
separated by solitary-wave-like kinks [19] which propa-
gate along the wall surface. If the height of the wall is
not too large, the resulting dynamic state may be periodic
[3]. An example of such a case for wall height 4 =3 um
is shown in Fig. 2 and the corresponding phase portrait

t=2500ns
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FIG. 2. (a) Stationary-state time evolution of the wall struc-
ture @(z,¢) and (b) wall surface shape §(z,7)=gq(z,t)—q(t) for
h=3.0 pum; q(¢) is the spatial average of g(z,¢). All curves
shown every 10 ns.
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FIG. 3. Phase portrait of the midplane point in the wall in a
frame moving with the spatial averages g(¢) and ¢(¢) for the
periodic attractor at A =3.0 um.

(in a moving frame [3]) is shown in Fig. 3. However,
once the height of the wall increases above a certain
threshold (3.0 um for the material parameters used here),
the prevailing dynamic states of the wall will be chaotic
[3] with only narrow periodic windows [19]. The strange
attractors found above this threshold are the subject of
this study.

III. PHASE SPACE

The phase space of a system described by a partial
differential equation of motion is infinite dimensional.
Since the spatial grid used for the calculations here con-
tained from 52 to 88 grid points, the effective phase space
for the pair of equations of motion of the Bloch wall was
104 to 176 dimensional. For every attractor studied, a
subspace of the full phase space was saved for
correlation-dimension calculations: the two variables
q(z,t) and @(z,t) from every fourth spatial grid point
were stored.

The calculations were then carried out for the trajecto-
ry of the system embedded in two different kinds of
space.

In the physical space the data for g(z,t) was taken at
ten evenly spaced locations from within the wall height.
Because there are two variables this gave two ten-
dimensional embedding spaces: a g space and a ¢ space;
however, only results concerning the former will be
presented here as the other embedding does not give
qualitatively new results.

In the reconstructed space the data for the variable
chosen [g(z,t)] was stored for chosen locations defined by
the spatial grid point number. The data vector was then
embedded in a ten-dimensional space constructed with a
suitable time delay according to the theorem by Takens
[8,9].
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IV. CORRELATION DIMENSION

A slightly modified Grassberger-Procaccia algorithm
was used to calculate the correlation dimension [7]. This
algorithm requires that, given the matrix dimension, i.e.,
the dimension of the phase space used, the sum of the
number of points belonging to the trajectory of the sys-
tem and lying within a hypersphere of the radius € sur-
rounding each point of the trajectory [i.e., the correlation
function C(€)] can be found:

N N
Ce)=[1/(NP)]S 3 Ole—Iy(i)—y(i)D),
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with © the Heaviside function. The number K ensures
that the vectors used in the calculations will be
sufficiently independent [17]. In the present case it was
found that if K =24 no enhancement of the scaling region
results. Also, to shorten the computer time, for summa-
tion over j a random representation of P =10% of the to-
tal number of points N was chosen (cf. [18]). The correla-
tion dimension is then just the slope—within a certain
scaling region—of the logarithm of this number as the
function of the logarithm of the radius € of the hyper-
sphere. The hypersphere radius € was changed by factors
of 2 so that the exponent of 2 could be extracted from the
computer real number representation without resorting
to calculations of logarithms. Euclidean norm was used
(cf. [17]).

A large number of tests were carried out to find the
proper sampling time which allows us to obtain a good
scaling region, i.e., the range of € for which the number
of points scales exponentially with sphere size. The best
sampling time for the states discussed here was found to
be 2 ns (values ranging from 0.5 to 6 ns were used).
Simultaneously it was found that, for two of the chaotic
attractors studied, it is sufficient to use trajectories 10 000
ns long (5000 data points) to obtain a good estimate of
the correlation dimension. 20000-ns-long trajectories
(10000 data points) were also used with equally good re-
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FIG. 4. Example of correlation function C vs hypersphere ra-
dius € for several values of the matrix dimension m.
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sults, but it was found that such a number of points yields
results which are much clearer physically for the third at-
tractor studied (h =5 um—see below).

The optimum matrix dimension was found to be 10 for
both the physical phase space and the reconstructed
phase space. As an example, the correlation function
versus the radius € in log-log scale is shown in Fig. 4 for
matrix dimension m =5, 7, 9, and 10 for physical phase-
space calculation for one of the attractors studied here
(h=4.5 um and data taken from grid point number 48).
It can be seen that the slope of the curves saturates very
well with the value of m so that m =10 may be con-
sidered a sufficiently large embedding dimension.

For the case of the reconstructed phase space, an addi-
tional degree of freedom remains in the choice of the time
delay 7. Using as basic criterion the linearity of the
correlation function, it was found that the best results
were obtained for delay time 7=3 ns [although values of
7 ranging from 1 to 7 ns were tried with the shape of the
C(€) curve changing from concave to convex with 7; at
the extreme values of this parameter no scaling regions
could be defined].

V. RESULTS AND DISCUSSION

Three different chaotic attractors of the Bloch domain
wall [3,15] were chosen as case studies. All are obtained
for different wall height 4, but the same value of the drive
field H,=12 Oe, i.e., 1.08 Oe above the Walker critical
field. For all attractors studied, the data were stored for
the variable g(z,?) and always with a time step of 1 ns for
up to 20000 ns after the transients had died out (at
¢ <2000ns).

A. Reconstructed phase space

The chaotic attractor for wall height # =3.5 Oe was
found elsewhere [15] to be spatially uniform: the phase
portraits of the time evolution of q(z,¢) versus ¢(z,t) for
different spatial locations were very similar to each other
as were the power spectra in the time domain at these
points. The steady-state phase portrait for the midplane
point of the wall for this case is seen in Fig. 5 while the
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FIG. 5. Phase portrait of the midplane point in the wall for

the chaotic attractor at 2 =3.5 um.
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FIG. 6. (a) Stationary-state time evolution of the wall struc-
ture @(z,¢) and (b) wall surface shape §(z,¢t)=gq(z,t)—q(t) for
h=3.5 um; g(¢) is the spatial average of ¢(z,t). All curves
shown every 10 ns.

wall structure @(z,t) and the wall surface shape ¢(z,?) in
a frame moving with the average position of the wall is
seen in Figs. 6(a) and 6(b), respectively [15]. This is then
a state in which two w-kink solitary-wave excitations
(Bloch lines) [3,19] are present in the wall; the wall sur-
face vibrates in an irregular way.
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FIG. 7. Correlation function C(¢) for h =3.5 um calculated
at grid point number 8.
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FIG. 8. Correlation dimension D, for #=3.5 um as function
of position along the height of the wall. Symbols: X, values ob-
tained from the secondary scaling region at lower lengths scales;
A |, locations from which the physical space was constructed.

The correlation dimension calculated for the attractor
of Figs. 5 and 6 in the phase space reconstructed at
different spatial locations in the wall reflects the spatially
uniform character of this state. Figure 7 depicts an ex-
ample of the correlation function versus hypersphere ra-
dius obtained for this case. Figure 8 depicts the distribu-
tion of the correlation dimension along the wall height
obtained for the phase space reconstructed from data tak-
en at the grid points chosen. Although the value of the
correlation dimension changes slightly from location to
location, the differences are rather small and not much
larger than the error, which is estimated to be about 0.1.
Two interesting features are visible in Fig. 8. First, the
value of the dimension at the surfaces is somewhat
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FIG. 9. Phase portrait of the midplane point in the wall for
the chaotic attractor at A =4.5 um.
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FIG. 10. (a) Stationary-state time evolution of the wall struc-
ture @(z,7) and (b) wall surface shape §(z,t)=gq(z,t)—gq(t) for
h=4.5 pm; q(z) is the spatial average of g(z,z). All curves
shown every 10 ns.
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FIG. 11. Correlation dimension D, for h =4.5 um as func-
tion of position along the height of the wall. Symbols: X,
values obtained from the secondary scaling region at lower
lengths scales: A , locations from which the physical space was
constructed.
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FIG. 12. Correlation function C(e€) for h =4.5 um calculated
at grid point number 44.

different from that obtained from phase-space reconstruc-
tion performed on data farther from the surface of the
film and also these values are different at the two surfaces
of the film. Second, an additional scaling region is found
for data taken for several grids points (x in Fig. 8).
Considerable effort went into attempts at getting rid of
this secondary scaling region by adjusting the parameters
of the calculation: the sampling time and the time delay.
It was found that the secondary scaling region is a per-
sistent feature for the specific grid points where it is visi-
ble. At most what could be achieved in this way was that
the additional scaling region was shorter and less well
defined (less than three points), but it did not disappear.
Usually, the only result of such a manipulation of the pa-
rameters of the computation was that the linearity of the
function C(€) was completely lost. Because of this be-
havior the second scaling region is considered to be a
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FIG. 13. Phase portrait of the midplane point in the wall for
the chaotic attractor at # =5.0 um.
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FIG. 14. (a) Stationary-state time evolution of the wall struc-
ture @(z,7) and (b) wall surface shape q(z,t)=¢q(z,t)—q(2) for
h=5.0 um; q(z) is the spatial average of g(z,¢). All curves
shown every 10 ns.

feature of the attractors studied and not an artifact.

The results obtained for the chaotic attractor at 2 =4.5
pm (Figs. 9 and 10 [15]) are similar to those obtained for
h=3.5 um. The spatial distribution of the correlation di-
mension is again almost uniform, except for the surface
effect which is much stronger in the present case and

15
4

5 0 .
@

FIG. 15. Phase portrait for the chaotic attractor at # =5.0
pm calculated at the surface of the film (grid point number 1).
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much more symmetric (Fig. 11). The second scaling re-
gion is also obtained (Fig. 12)—this time at more grid
points—but only at the surfaces the slopes of the two
scaling regions are significantly different. The spatial uni-
formity of the attractor at #=4.5 um obtained in the
correlation-dimension calculations is again in good agree-
ment with results obtained elsewhere by means of phase
portrait analysis and power spectra [15].

The chaotic attractor (Figs. 13 and 14) obtained for
h=5.0 um was found elsewhere [15] to be spatially
nonuniform: the phase portraits at or close to the surface
of the material (Fig. 15) were different from those found
close to the midplane of the film (Fig. 13). The correla-
tion function curve for this attractor displays three scal-
ing regions (Fig. 16). The slopes of these regions yield
three values of correlation dimension at each grid point
(Fig. 17: solid curve, larger length scales; pluses, inter-
mediate length scales; crosses, smaller length scales). It
can be seen that the differences between the values of the
correlation dimension at different locations are now
significantly larger. The regions around the parts of the
wall which are 24 grid points away from the surfaces of
the film had been previously found to be a boundary be-
tween two different chaotic regions in the wall [15]: the
two at the surfaces of the film and the one around the
midplane area. At these boundary regions a distinct
phase portrait (Fig. 18) was obtained [15]. In Fig. 17
(solid curve) it can be seen that the correlation dimension
has a maximum close to the boundary regions found in
Ref. [15].

The correlation dimension from one of the scaling re-
gions (smaller length scales, crosses in Fig. 17) is not a re-
liable measure of the statistics on the attractor since the
scaling region, although sharply defined at many of the
grid points, has a width of only three points on the C(€)
curve. At grid points 56 and 68 the secondary slope was
not available. Yet the distribution of the value of this
slope follows qualitatively the distribution given by the
solid curve in Fig. 17. Thus, for the reconstructed space
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FIG. 16. Correlation function C(¢€) for A =15.0 um calculated
at grid point number 60.

J. J. ZEBROWSKI 47

o
o
o
IS TS USSR WO S A W |

2.50 %

2.00

1.50

P S T U B S SO R RS B S B N

1.00 AI A A A A A A A A TA .
11

33 44 55 65 77 88
point index

o

22
grid
FIG. 17. Correlation dimensions D, for #=5.0 um as func-
tion of position along the height of the wall. Symbols: X, lower
lengths scales; +, intermediate lengths scales; *, largest lengths

scales; A , locations from which the physical space was con-
structed.

embedding, the spatial distribution of the correlation di-
mension seems to mirror the dynamics of the system: an
increase in the dimension is obtained in those regions
where two attractors border within the height of the wall
and perturbed each other.

The third scaling region found for this case for the in-
termediate length scales of the C(€) curve (pluses in Fig.
17) yielded a surprisingly uniform value of the slope. It is
possible that the existence of this intermediate scaling re-
gion lying between the other two is a symptom of a
bunching of the trajectory loops as they surround the re-
pellor (the unstable fixed point representing the Walker
motion of the wall [3]). As the radius € is increased above
a certain value, the hypersphere of the Grassberger-
Procaccia algorithm encompasses a part of the attractor

-5

FIG. 18. Phase portrait for the chaotic attractor at #=5.0
pm calculated at grid point number 24.
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which is less frequently visited by the trajectory. For still
larger €, the hypersphere again enters a region where
more trajectories are close together. This interpretation
is borne out by the shape of the two-dimensional projec-
tions of the phase portraits (cf. Fig. 13, the midplane
phase portrait) where two types of loops are visible:
tighter ones around the point (0,0) (the repellor) and
larger ones further away from it. It also explains the
poorer quality of the slope C(¢€) at smaller length scales
(crosses in Fig. 17)—the solid curve in Fig. 17 was calcu-
lated on a better statics (larger number of points of the
trajectory within the hypersphere).

B. Physical phase space

For the attractors at #=4.5 and 5.0 um the values of
the correlation dimension obtained from physical space
are an average of the spatial distribution of the
correlation-dimension form reconstructed phase space.
For the h=4.5 um a single scaling region is obtained
with the correlation dimension of 2.44. For the /=5 um
attractor three scaling regions were found with slopes
2.13, 1.4, and 2.05.

A rather surprising result is obtained for A =3.5 um,
for which the physical-space calculation unexpectedly
seems to fail for this spatially uniform attractor yielding
also two scaling regions with slopes 1.97 and 2.35, which
bracket the values of correlation dimension found for the
reconstructed space calculation.

In general, the results found for the Bloch wall seem to
agree with a remark by Babloyantz [20] based on a calcu-
lation of the correlation dimension from experimentally
measured human electroencephalogram that the mul-
tichannel approach—an equivalent of the physical-space
embedding used here— generally yields lower values than
does the reconstructed phase space.

VI. CONCLUSIONS

The many-scale behavior found for two of the strange
attractors analyzed should not be attributed to problems
with statistical dependence of the points on the trajecto-
ry. The specific distortions of the C(€) curves mentioned
in the literature [17,23] and due to strong correlations be-
tween points on the trajectory were present in the calcu-
lation at an early stage when the original Grassberger-
Procaccia algorithm with K =1 and P =N was used. The
calculation presented here has been fine tuned by judi-
cious use of the parameters—sampling time and delay
time 7—so that the scaling regions obtained are best
defined and their boundaries are sharp. Note also that,
although rather elaborate corrections to the
Grassberger-Procaccia algorithm (i.e., [23,24]) may make
the distortion (the so-called “knee”) of the C(€) curves at
higher embedding dimensions go away leaving a well-
defined slope, often several scaling regions are obtained
[cf. Figs. 5(b) and 6 in Ref. [24]).

In the calculations of correlations dimension presented
above care was taken to treat data taken from all grid
points of a given chaotic attractor equally. Thus, if a spa-
tial distribution of the correlation dimension is
obtained —especially when such a distribution is more
pronounced at the surfaces of the material —this means
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that the Takens theorem of phase-space reconstruction,
when applied to a spatially extended system, yields a
measure of the local properties of the system. This may
come as a surprise since for maps and an ordinary
differential equation the correlation dimension is expect-
ed to be just a single number—a measure of the complex-
ity of the system as a whole. It may be surmised that if,
for the reconstruction, a truly infinite length of the trajec-
tory of the system were used (as indeed the Takens
theorem assumes), then perhaps no spatial distribution
would be obtained and a single number for the correla-
tion dimension of the Bloch wall would result. Unfor-
tunately, for real experimental situations as well as for
computer experiments like the present calculation, the
trajectory available is far from infinite. In the course of
this study, the number of points used for the most spatial-
ly nonuniform case (h =5 um) was doubled from 5000 to
10000. The spatial distribution did not change and only
a scatter present in the values of the correlation dimen-
sion was diminished resulting in a smoother curve.

Due to the finite length of the time series used, the spa-
tial distribution of correlation dimension discussed here
is only a qualitative measure of the complexity of a spa-
tially extended dynamical system. However, the above
results are in agreement with the conclusions of the two-
point correlation-density calculations [13,14] that, at
least for a finite-length time series, the number of degrees
of freedom is a local quantity. In any case, care should
be taken during measurements in spatially extended sys-
tems as the placement of the measuring tool with respect
to the symmetry of the system may be an important fac-
tor.

It is indeed not surprising that a different result should
be obtained for the surface or boundary of a given system
other than what is found for its interior. However, a
stronger statement may be made. Stoop et al. [21] have
found experimental indications that during avalanche
breakdown in a semiconductor a gradual decoupling of
different parts of the sample may occur leading to slightly
different fractal dimensions. Similar behavior for the
Bloch wall has been found in a numerical experiment ear-
lier [15] (and partially reproduced here) in the case of the
strange attractor at h =5 um. The phase portrait shown
in Fig. 18 was attributed in Ref. [15] to an attractor
which arises due to mutual perturbation of three attrac-
tors: the one obtained at the surface (Fig. 15), the one
found in the midplane of the material (Fig. 13), and an
adjacent (in parameter space) periodic attractor which
some of the loops seen in Fig. 13 closely resemble. Con-
sequently one should expect that the region of the wall
where the attractor of Fig. 13 is found (about 24 grid
points away from the surfaces) will have a larger number
of degrees of freedom active and this is borne out by the
results presented in Fig. 17. Other groups have also ob-
tained two-scale behavior and have used this result to
claim a spatially nonuniform character of the dynamics
of the system studied (see, e.g., Figs. 2 and 3 of Sato,
Sano, and Sawada [22] and accompanying discussion).

Since the strange attractors studied here for wall
height £ =3.5, 4.5, and 5 um give a single scale, a two-
scale and a three-scale behavior, respectively, one natu-



2316

rally wonders what will occur at still larger heights of the
wall. The calculations for large wall sizes become
cumbersome as more and more grid points must be used
to retain accuracy while there is no good way to auto-
mate the finding of the scaling regions for each grid point
studied. However, preliminary results for the strange at-
tractor at A =6 um (106 grid points) show that only three
scaling regions are found and the overall picture seems to
be similar to that in Fig. 17. For this state many solitary
waves are present at once in the wall structure [15],
which seems to account for the fact that the calculated
correlation dimensions at some points in the wall exceed
3.5. Calculation of the correlation dimension for still
larger wall heights is planned.

For hydrodynamics, it has been shown that the corre-
lation dimension of a spatially extended system may be
seen as an extensive property of the system and as such
will increase with system size [12—-14,25]. It is interesting
to note that in the case of the Bloch wall it is not so. Not
only has the single-point correlation dimension not in-
creased by more in amplitude than 15% with an increase
of the size of the system by 2, but also the correlation di-
mension from physical space—a measure of the averaged
or global dynamics of the system—has not increased
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significantly. The reason is that with the increase of the
size of the system studied here the number of coherent
spatial structures (Bloch lines) has not increased in a
dramatic way. Preliminary calculations indicate [26] that
even for a much larger increase of the size of the system
(up to at least 40 um) the number of coherent spatial
structures, although rising, does not increase dramatical-
ly and that a cascade of coherent structures with smaller
and smaller length scales—to be expected in
hydrodynamics—does not occur in the Bloch wall.
Perhaps then, for systems with coherent spatial
structures—the extensiveness of correlation dimension
goes with the number of independent (as opposed to
bound) coherent spatial structures present rather than
with just the size of the system.
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